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This paper analyzes the nonlinear vibration characteristics associated with the spin

drying process of a vertical axis automatic washing machine without any balancer. At

first, damping properties born with the machine’s suspension system are discussed and

a mathematical model involving tangential damping forces is built. Based on a rotating

stability analyses. The continuation and bifurcation software AUTO [1] is applied and a

Hopf bifurcation phenomenon is observed from a one-parameter bifurcation diagram.

Based on several two-parameter bifurcation diagrams, several parameters affecting the

Hopf bifurcation are then discussed. At last, bifurcation results are validated by time

responses of the autonomous system. For a further view of the spin drying process,

simulations of the non-autonomous system are also provided. This paper provides a

new insight into the spin drying process of the vertical axis automatic washing machine.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Automatic washing machines may be classified into three types: drum-type, agitator-type and pulsator-type.
Drum-type washers have horizontal axes while agitator-type and pulsator-type washers have vertical ones. The agitator-
type and the pulsator-type employ different suspension schemes. The former uses bottom mount suspension: the
washing/spinning assembly connects directly to a base structure through spring/damper elements; the later uses top
mount suspension: the washing/spinning assembly is suspended from four suspension rods.

The working process of an automatic washing machine may be divided into three successive steps: washing, rinsing and
spin drying. In the first two steps, imbalance may be created in the basket if clothes clump together. Due to a high ration
speed of the basket, the imbalance may cause serious vibrations in the spin drying process. Because of noise and safety
requirements, low vibration has become one of the most important performance characteristics of a washing machine.
Therefore studies on the dynamics and vibration control principles have attracted lots of attention from researchers and
washing machine producers. A detailed review of these studies was conducted by Conrad [2] in his doctoral thesis. The
literature obtained was separated into four areas, they are suspension dynamics, walk characteristics, dynamic balancing
and clothes loading. He concluded that the area of washing machine design based on dynamic constraints was still in the
reserach stage. An introduction of studies on the dynamics of the drum-type and aigtator-type washers was made by
Bae et al. [3] in their research paper. After the introduction, they carried out an analytical study on the dynamics of the
pulsator-type washing machines.
ll rights reserved.
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A vertical automatic washing machine of pulsator-type is what we will discuss in this paper. In the spin drying process
of the pulsator-type washing machine, a hydraulic balancer is often used for vibration suppression. It is partially filled with
liquid and attached at the upper part of the basket. At the steady state of the spin drying process, if the ration speed of the
basket is high enough, the liquid in the balancer will redistribute and rush to the opposite side of the imbalance under the
effect of the centrifugal forces, thus reducing excessive vibrations of the washing machine.

From the literature available, research on the spin drying process of the pulsator-type washing machine may be divided
into two categories: the first focuses on the suspension system, such as discussing the effect of air in the damping tub of a
suspension rod [4] and suggesting a flexible model for the rod [5]; the other category focuses on the hydraulic balancer,
for instance, Bae et al. [3] built a mathematical model to illustrate the distribution of liquid in the hydraulic balancer at the
steady state while Wang [6] used three balls to simulate the balancer’s effect.

The hydraulic balancer is effective in reducing vibrations of the spin drying process in the steady state; however, due to
its nonlinearities, it may increase the imbalance in the transient stage. Based on our simulations, nonlinear vibration
properties exist in the spin drying process even without the hydraulic balancer. Although there have been a number of
studies on the dynamics of the pulsator-type washing machine, stability analyses of the spin drying process have not yet
been reported. In this paper, a mathematical model involving tangential damping forces of the suspension system is built
and transformed to an autonomous form for stability analyses. A Hopf bifurcation phenomenon is observed and the
influential factors are investigated. In order to investigate basic properties of the spin drying process, a hydraulic balancer
is not considered in our mathematical model.

2. Mathematical model

The structure of the vertical-axis automatic washing machine discussed in this paper is shown in Fig. 1(a). This consists
of a cabinet, a suspension system and a washing/spinning assembly. The washing/spinning assembly is composed of a
hydraulic balancer, a tub, a basket, a motor and a clutch. The assembly is connected to the cabinet through a suspension
system with four suspension rods whose structures are shown in Fig. 1(b). The suspension rod contains two spherical
joints, a rod and a damping tub. During the spin drying process, the suspension rod can swing and stretch simultaneously,
thus both tangential and axial damping forces could be exited.

Three basic assumptions are made in this paper:
(1)
 The cabinet is fixed to the ground.

(2)
 The washing/spinning assembly is free to move, no collisions with the cabinet occur during simulations.

(3)
 All the machine’s components can be treated as rigid bodies.
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Fig. 1. (a) Structure of a vertical axis automatic washing machine and (b) structure of the suspension system.
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2.1. Kinetic energy of the washing/spinning assembly

2.1.1. Reference frames and structure analysis

For describing movements of the washing/spinning assembly, two reference frames are established in Fig. 1(a): a
ground reference frame XrYrZr and a local reference frame XbYbZb embedded in the tub. It is assumed that the lower
spherical joints of the four suspension rods are arranged on plane A which is perpendicular to the vertical axis of the tub
(Zb-axis) with intersection point Ob (the origin of XbYbZb).

For the convenience of calculating the kinetic energy, bodies are classified into two categories: bodies in the first one are
fixed on the tub, such as the tub itself, stator of the motor and so on; bodies in the other can rotate around an axis parallel
to the vertical axis of the tub, such as the basket, rotator of the motor and clumped clothes.
2.1.2. Kinetic energy of a body in the first category

For obtaining the kinetic energy of a body in the first category, both translational and rotational velocities of the body
have to be calculated at first. Assume a body’s mass center can be represented by C whose position vector can be denoted
by rc in XbYbZb. Note that rc is constant since a body in this category is fixed on the tub. However, because the body moves
along with the tub, the position vector of C in the global reference frame XrYrZr varies and can be described as

s¼ xþArbrc (1)

where x¼ ½x y z�T is the position vector of Ob; Arb is the transformation matrix from XbYbZb to XrYrZr and can be
expressed as

Arb
¼

cosb cos g �cosb sin g sinb
sina sinb cos gþcosa sin g �sina sinb sin gþcosa cos g �sina cosb
�cosa sinb cos gþsina sin g cosa sinb sin gþsina cos g cosa cosb

264
375 (2)

where fa b gg are Cardan’s angles. Now, we discuss the body’s translational velocity. Differentiating Eq. (1) with respect to
time yields

_s ¼ _xþ _A
rb

rc ¼ _xþArbfxb rc ¼ _x�Arb ercxb (3)

with xb the angular velocity of XbYbZb (expressed in XbYbZb) which can be expressed as

xb ¼ B _u (4)

where _u ¼ ½ _a _b _g�T is the derivative of Cardan’s angles; B is the transformation matrix relating xb to _u and can be
described as

B¼

cosb cos g sin g 0

�cosb sin g cos g 0

sinb 0 1

264
375: (5)

After substituting Eq. (4) into Eq. (3), the body’s translational velocity can be expressed as

_s ¼ _x�Arb erc B _u ¼ ½I3 �Arb erc B� _q (6)

where I3 is a 3�3 identity matrix and _q ¼ ½ _x _y _z _a _b _g�T. We now calculate the body’s angular velocity. Considering each
body has its individual reference frame which can be denoted by XcYcZc , the body’s angular velocity can be expressed in
XcYcZc as

xc ¼ ðA
bc
Þ
T xb ¼ ðA

bc
Þ
TB _u ¼ ½03�3 ðA

bc
Þ
TB� _q (7)

where Abc is the transformation matrix from XcYcZc to XbYbZb (Abc is a constant matrix for a body in the first category);
03�3 represents a 3�3 zero matrix. The body’s kinetic energy can be expressed as

T ¼
1

2
m_sT _sþ

1

2
xT

c Jcxc (8)

where m is the body’s mass and Jc is the body’s inertia tensors. The body’s kinetic energy can be further described after
substituting Eqs. (6) and (7) into Eq. (8) as

T ¼
1

2
m _qT

I3

�BT
ð erc Þ

T
ðArb
Þ
T

" #
½I3 �Arb erc B� _qþ

1

2
_qT 03�3

BTAbc

� �
Jc½03�3 ðA

bc
Þ
TB� _q

¼
1

2
_qT mI3 �mArb erc B

�mðArb erc BÞT BT
ðmð erc Þ

T ercþðA
bc
ÞJcðA

bc
Þ
T
ÞB

" #
_q (9)
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2.1.3. Kinetic energy of a body in the second category

We now calculate kinetic energy of a body in the second category. A body in the second category can rotate around
an axis parallel to the Zb-axis. Assume a body’s mass center can be represented by C whose position can be expressed in
XbYbZb as

rc ¼ pþu (10)

where p¼ ½px py pz�
T is a constant vector with px and py describing the position of the body’s rotation axis and pz

representing the height of C; u is a variable vector which can be expressed as

u¼ ½Ru cosyc Ru sinyc 0�T (11)

where Ru is the radius of gyration and yc is the rotation angle. It should be noted that both p and u are measured in XbYbZb.
Considering movements of the tub, the position vector of C can be described in XrYrZr as

s¼ xþArb rc ¼ xþArb
ðpþuÞ (12)

We now calculate the body’s translational velocity. This can be obtained by differentiating Eq. (12) with respect to time

_s ¼ _xþ _A
rb
ðpþuÞþA _u ¼ _x�Arb gðpþuÞB _uþArb @u

@yc

_yc ¼ I3 �Arb erc B Arb @u

@yc

� �
_jc (13)

where _jc ¼ ½ _x _y _z _a _b _g _yc�
T. We now calculate the body’s angular velocity which can be expressed in its individual

reference frame XcYcZc as

xc ¼ ðA
bc
Þ
T
ðxbþe _ycÞ ¼ ðA

bc
Þ
TB _uþðAbc

Þ
Te _yc ¼ ½03�3 ðA

bc
Þ
TB ðAbc

Þ
Te� _jc (14)

where e¼ 0 0 1
� �T

describes the direction of the body’s rotation axis in XbYbZband Abc represents the transformation
matrix from the body’s reference frame to XbYbZb. Abc can be expressed as

Abc
¼

cosyc �sinyc 0

sinyc cosyc 0

0 0 1

264
375 (15)

Note that ðAbc
Þ
Te¼ e, the body’s kinetic energy can be obtained after substituting Eqs. (13), (14) into Eq. (8)

T ¼ _jT
c

mI3 �mArb erc B mArb @u

@yc

�mðArb erc BÞT BT
ðmð erc Þ

T ercþðA
bc
ÞJcðA

bc
Þ
T
ÞB BT

�mð erc Þ
T @u

@yc
þðAbc

ÞJce

� �
m Arb @u

@yc

� �T

�mð erc Þ
T @u

@yc
þðAbc

ÞJce

� �T

B m
@u

@yc

� �T @u

@yc

� �
þeTJce

2666666664

3777777775
_jc (16)

where

@u

@yc
¼ �Ru sinyc Ru cosyc 0
� �T

(17)
2.1.4. Kinetic energy of the washing/spinning assembly

We now calculate the kinetic energy of the washing/spinning assembly. This can be obtained by adding all the bodies’
kinetic energies together. Assume that the basket’s rotational speed can be represented by _y, the rotational speed of the ith
body in the second category can be expressed as _yci ¼ pi

_y where pi is a constant proportional coefficient (pi=1 for the
basket). It is assumed that there areN1bodies in the first category and N2bodies in the second one, total kinetic energy of
the assembly can be expressed as

TR ¼
XN

i ¼ 1

Ti ¼
1

2
_jTMR _j (18)
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where N¼N1þN2; _j ¼ ½ _x _y _z _a _b _g _y �T;

MR ¼

XN

i ¼ 1

mi

 !
I3 �Arb

XN

i ¼ 1

mifrci

 !
B Arb

XN2

j ¼ 1

mjpj

@uj

@ycj

0@ 1A
� Arb

XN

i ¼ 1

mifrci

 !
B

 !T

BT
XN

i ¼ 1

miðfrci Þ
TfrciþðA

bc
i ÞJciðA

bc
i Þ

T

 !
B BT

XN2

j ¼ 1

�mjpjðfrcj Þ
T @uj

@ycj
þpjðA

bc
j ÞJcje

� �

Arb
XN2

j ¼ 1

mjpj

@uj

@ycj

0@ 1A0@ 1AT XN2

j ¼ 1

�mjpjðfrcj Þ
T @uj

@ycj
þpjðA

bc
j ÞJcje

� �0@ 1AT

B
XN2

j ¼ 1

mjp
2
j

@uj

@ycj

� �T @uj

@ycj

� �
þp2

j eTJcje

 !

2666666666666664

3777777777777775
(19)

where e¼ ½0 0 1 �T.

2.2. Geopotential energy of the washing/spinning assembly

We now calculate the geopotential energy of the washing/spinning assembly. Assume that the mass of the ith body can
be represented by mi, the body’s geopotential energy can be described as

Vgi ¼migszi (20)

where g is the local gravitational acceleration; szi is the third component of the vector ‘‘s’’ defined in Eqs. (1) (12) and can be
expressed as

szi ¼ zþArb
3;:rci (21)

with Arb
3;: representing all the elements in the third row of Arb. We now calculate the total geopotential energy of the

washing/spinning assembly. This can be obtained by adding all the bodies’ geopotential energy together, such that

Vg ¼
XN

i ¼ 1

miðzþArb
3;:rciÞ

" #
g (22)

where N represents the number of bodies in the washing/spinning assembly.

2.3. Generalized forces provided by the suspension system

This section discusses generalized forces provided by the suspension system. Considering the mass of the suspension
rod is very small, inertia forces acting on it can be neglected. We now establish a local reference frame denoted by
e1�e2�e3 for a suspension rod, see Fig. 2. Assume that the position vector of the suspension rod’s lower spherical joint O

can be represented by rd in XbYbZb. Considering movements of the tub, the position vector of jointO can be expressed
P

Damping tub

d

v

P

vy

Moz

MpzFoy

Fpy

P

Moy

Foz

Fpz

e2

e1

e1

e3

e1

e2

e3

Mox

Fig. 2. Forces acting on a suspension rod: (a) direction vectors and forces along e1; (b) tangential damping forces in plane e1�O�e2 and (c) tangential

damping forces in plane e3�O�e1.



ARTICLE IN PRESS

H.-W. Chen, Q.-J. Zhang / Journal of Sound and Vibration 329 (2010) 2177–21922182
in XrYrZr as

sd ¼ xþArbrd (23)

We now calculate the translational velocity at O. This can be obtained by differentiating the above equation with respect to
time

v¼ _x�Arb erd B _u (24)

Now we discuss the vector d displayed in Fig. 2(a). Assume that the position vector of the suspension rod’s upper spherical
joint P can be denoted by su in XrYrZr , the vector d in Fig. 2(a) can be derived as

d¼ su�sd ¼ su�x�Arbrd (25)

where sd was described in Eq. (23). Now let

t¼ d� v (26)

the following three normalized direction vectors orthogonal to each other can be obtained

e1 ¼ d=d (27)

e3 ¼ t=t (28)

e2 ¼ e3 � e1 (29)

The local reference frame e1�e2�e3 can be constructed based on these vectors.

2.3.1. Forces along the direction e1

The forces along the direction e1 are shown in Fig. 2(a). Two forces act on the suspension rod along the direction e1: one
is the restoring force of the spring and the other is the axial damping force provided by the damping tub. The restoring
force can be described as

Fs ¼�Ksðjdj�l0Þ (30)

With Ks the stiffness of the spring and l0 the initial length of the rod that outsides the damping tub. The axial damping force
can be expressed as

Fva ¼�Cað�v � e1Þ ¼ Caðv � e1Þ (31)

with Ca representing the axial damping coefficient of the suspension rod.

2.3.2. Tangential damping forces in plane e1�O�e2

The tangential damping forces in plane e1�O�e2 are shown in Fig. 2(b), they are excited by angular velocities of the
suspension rod and the tub. First, we derive the torque at joint P. Considering translational velocity at point O along the
direction e2 is

vy ¼ v � e2 (32)

angular velocity of the suspension rod in plane e1�O�e2 can be described as

o¼�vy=d (33)

Viscous damping is assumed in joints and the torque aroused byoat joint P can be described as

Mpz ¼�Cpo (34)

Where Cp is the damping coefficient of joint P. Now, we calculate the torque at the spherical joint O. In order to do this,
the angular velocity of tub described in Eq. (4) needs to be expressed in XrYrZr as

xr
b ¼Arb xb ¼ArbB _u (35)

Considering Eqs. (33)(35), the torque due to damping at the spherical joint O can be derived as

Moz ¼�Cozðo�xr
b � e3Þ (36)

Where Coz is the damping coefficient of joint O along the direction e3. Now, we discuss the force acting on joint O.
Considering the following equilibrium condition in plane e1�O�e2 has to be satisfied

MpzþMoz�Foyjdj ¼ 0 (37)

the force acting on joint O along the direction e2 can be derived as

Foy ¼
MpzþMoz

jdj
(38)
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2.3.3. Tangential damping forces in plane e3�O�e1

We now discuss tangential damping forces in plane e3�O�e1 which are excited by angular velocities of the tub,
see Fig. 2(c). Considering the angular velocity of the tub in plane e3�O�e1 is xr

b � e2, the torque acting on joint O along the
direction e2 can be described as

Moy ¼�Coyð0�xr
b � e2Þ ¼ Coyðxr

b � e2Þ (39)

Where Coy is the damping coefficient of joint O along the direction e2. Because the following equilibrium condition has to
be satisfied in plane e3�O�e1

FozjdjþMoy ¼ 0 (40)

the force acting on joint O along the direction e3 can be derived as

Foz ¼�
Moy

jdj
(41)

2.3.4. Tangential damping forces in plane e2�O�e3

We now calculate damping forces in plane e2�O�e3, this can be calculated with the assumption that the suspension
rod can not rotate around e1. Considering the angular velocity of the tub along e1 is xr

b � e1, the torque acting on O along the
direction e1 can be described as

Mox ¼�Coxð0�xr
b � e1Þ ¼ Coxðxr

b � e1Þ (42)

with Cox the damping coefficient of joint O along the direction e1.

2.3.5. Generalized forces provided by the suspension system

Axial damping forces and restoring forces of the springs were calculated in Section 2.3.1. Tangential damping forces and
torques were discussed in Sections 2.3.2 to 2.3.4. We now calculate generalized forces provided by the suspension system.
For doing this, we have to get the resultant force and torque at first, and then project the resultant force and torque on the
generalized coordinates.

First, we calculate the resultant force acting on joint O, this can be obtained by adding all the forces along directions e1,
e2, and e3 together. The resultant force acting on joint O can be expressed as

Fo ¼ ðFsþFvaÞe1þFoye2þFoze3 (43)

where Fs is the restoring force of the spring discussed in Eq. (30); Fva is the axial damping force described in Eq. (31); Foy is
the tangential damping force along the direction e2 described in Eq. (38); Foz is the tangential damping force along the
direction e3 expressed in Eq. (41).

We now calculate the resultant torque acting on joint O, this can be obtained by adding all the torques along directions
e1, e2 and e3 together. The resultant torque acting on joint O can be expressed as

Mo ¼Moxe1þMoye2þMoze3 (44)

where Mox is the tangential damping torque in plane e2�O�e3 expressed in Eq. (42); Moy is the tangential damping torque
in plane e3�O�e1 described in Eq. (39);Moz is the tangential damping torque in plane e1�O�e2 discussed in Eq. (36).

It should be noted that the generalized forces are provided by the reaction forces of the resultant force Fo and the result
torque Mo. In other words, the generalized forces are provided by �Fo and �Mo that act on the tub.

We now project �Fo and �Mo on the generalized coordinates. The generalized forces provided by the ith suspension rod
can be expressed as

Q i ¼�

Fo

ðArbBÞTðMoþ
g

Arbrd FoÞ

" #
(45)

where rd is the position vector of joint O which was described in XbYbZb.
We now calculate generalized forces provided the suspension system. This can be obtained by adding all the

generalized forces provided by the four suspension rods together. Total generalized forces can be expressed as

Q ¼
X4

i ¼ 1

Q i (46)

where Q i is the generalized forces provided by the ith suspension rod.
2.4. Vibration model of the system

Kinetic energy of the system was discussed in Section 2.1 and described in Eq. (18). Geopotential energy of the system
was introduced in Section 2.2 and described in Eq. (22). Generalized forces provided by the suspension system was studied
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in Section 2.3 and described in Eq. (46). This section discusses the vibration model of the system. This can be obtained by
substituting the kinetic energy, geopotential energy and generalized forces into Lagrange’s equation. The derived vibration
model of the system can be expressed as

MR €j ¼
1

2

@MR

@j
_j

� �T

_j� _MR _jþ
Q

0

� �
�
@Vg

@j
(47)

where j¼ ½ x y z a b g y �T represents the generalized coordinates; MRis the mass matrix described in Eq. (19);
Q is the generalized force described in Eq. (46); @Vg=@j is the partial derivatives of the geopotential energy Vg .

It should be noted that, during simulations, because rotations of the basket y are given, the governing equation on y
needs to be removed from Eq. (47). After the removing, the following governing equations on coordinates
f x y z a b g g are derived

M €q ¼
1

2

@M

@q
_q

� �T

_q� _M _qþFð _y; €yÞþQ�
@Vg

@q
(48)

where q¼ ½x y z a b g�T,

M¼

XN

i ¼ 1

mi

 !
I3 �Arb

XN

i ¼ 1

mifrci

 !
B

� Arb
ð
XN

i ¼ 1

mifrci ÞB

 !T

BT
�XN

i ¼ 1

miðfrci Þ
TfrciþðA

bc
i ÞJciðA

bc
i Þ

T
	

B

26666664

37777775 (49)

and Fð _y; €yÞ represents elements relevant to _y or €y which can be expressed as

Fð _y; €yÞ ¼ _qT @C
@q

� �T
_y�

X6

i ¼ 1

@C
@qi

_qi

 !
_y�

@C
@y

_y
� �

_y�
@M

@y
_y

� �
_q�C €y (50)

with

C¼

Arb
XN2

j ¼ 1

mjpj

@uj

@ycj

0@ 1A
BT
XN2

j ¼ 1

�mjpjðfrcj Þ
T @uj

@ycj
þpjðA

bc
j ÞJcje

� �
26666664

37777775 (51)
2.5. Autonomous equations in a rotating reference frame

We now discuss an autonomous form in a rotating reference frame. The autonomous form is necessary for
performing stability analyses. A method similar to that described in [7] is employed to convert Eq. (48) to an autonomous
form in a rotating reference frame with constant angular velocity O ðO¼ _yÞ. First, the following substitutions are
considered

t¼Ot
dt
dt
¼O

x¼ e1 cosðtÞ�e2 sinðtÞ
y¼ e1 sinðtÞþe2 cosðtÞ

z¼ e3

a¼ e4 cosðtÞ�e5 sinðtÞ
b¼ e5 sinðtÞþe5 cosðtÞ

g¼ e6

(52)

We now express the above substitutions in a matrix–vector form:

q¼He (53)
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where

H¼

cosðtÞ �sinðtÞ 0 0 0 0

sinðtÞ cosðtÞ 0 0 0 0

0 0 1 0 0 0

0 0 0 cosðtÞ �sinðtÞ 0

0 0 0 sinðtÞ cosðtÞ 0

0 0 0 0 0 1

2666666664

3777777775
(54)

q is the generalized coordinates q¼ ½ x y z a b g �T; e¼ e1 e2 e3 e4 e5 e6
� �T

.
We now express the generalized velocities _q and generalized accelerations €q as functions of e, _e and €e. Generalized

velocities of the original system can be derived by differentiating Eq. (53) with respect to time

_q ¼ _HeþH _e (55)

and generalized accelerations can be derived after a further differentiation of the above equation with respect to time

€q ¼ €Heþ2 _H _eþH €e (56)

We now derive the autonomous formulation. This can be obtained after substituting the generalized coordinates q in
Eq. (53), generalized velocities _q in Eq. (55) and generalized accelerations €q in Eq. (56) into the original system Eq. (48)

MH €e ¼ Gðe; _eÞ�M €He�2M _H _e (57)

where

Gðe; _eÞ ¼
1

2

@M

@q
_q

� �T

_q� _M _qþFð _y; €yÞþQ�
@Vg

@q
(58)

Let _e ¼ z, the above system can be transformed into a first-order formulation which is necessary for stability analyses

_e ¼ z

_z ¼ ðMHÞ�1
ðGðe; zÞ�M €He�2M _HzÞ

(
(59)

We now discuss the equilibrium point of the autonomous form. Considering _e ¼ 0 and _z ¼ €e ¼ 0 at the equilibrium point,
the point has the following form:

n� ¼
e�

z�

� �
¼

e�

0

� �
(60)

where z� ¼ _e� ¼ 0. Substituting _e ¼ 0, €e ¼ _z ¼ 0 into Eq. (57) yields

w¼Gðe�Þ�M €He� ¼ 0 (61)

For getting e�, Newton–Raphson method is employed

e�nþ1 ¼ e�n�J�1
w wðe�nÞ (62)

where

Jw ¼
@G

@e
�
@M

@e
€He�M €H (63)

with

@G

@e
¼
@G

@q
Hþ

@G

@ _q
_H (64)

and

@M

@e
¼
@M

@q
H (65)

3. Discussions

3.1. Stability analyses

Numerical bifurcation theory, specifically the continuation and bifurcation software AUTO [1] is employed here to
analyze the stability of the equilibrium point described in Section 2.5. An imbalance mass representing the clothes is
considered and fixed on the basket. The mass, radius of gyration and height of the imbalance are denoted by mu, Ru, and hu

(measured in XbYbZb), respectively. Values of the tangential damping coefficients described in Section 2.3 are assumed to
be the same, namely Cox ¼ Coy ¼ Coz ¼ Cp. Table 1 shows parameters used in the analyses, including their nominal values,
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Table 1
Parameters for analyses.

Parameters Note Nominal value Lower limit Upper limit Unit

Imbalance mass mu 1 0 2.5 kg

Gyration radius of the imbalance Ru 0.15 0 0.25 m

Rotational speed of the basket O 10 0 15 Hz

Axial damping coefficient of the suspension system Ca 100 0 5000 N s m�1

Stiffness coefficient of the suspension system Ks 1800 500 4500 N s m�1

H

Cp [N m s rad-1]

L 2 ∗

Stable

Unstable
Cp=0.101

0.3169

0.3168

0.3168

0.3167

0.3167
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Fig. 3. One parameter bifurcation diagrams showing variations of the tangential damping coefficient CpðCox ¼ Coy ¼ Coz ¼ CpÞ. A Hopf bifurcation H is

indicated by a (*). Thick curve means the equilibrium point is stable while dot curve means unstable. The ordinate L2 represents the default norm used by

AUTO.
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Fig. 4. Two-parameter bifurcation diagrams showing variations of the rotational speed of the basket O and the tangential damping coefficient Ru.

H represents the curve of the Hopf bifurcation.
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lower limits and upper limits. During the analyses, the height of the imbalance is assumed to be hu ¼ 0:1 m. Newton–
Raphson method is used to get the initial equilibrium position of the autonomous form based on which bifurcation
analyses are carried out in AUTO.

Fig. 3 gives one-parameter bifurcation diagrams showing variations of the tangential damping coefficient
CpðCox ¼ Coy ¼ Coz ¼ CpÞ. This paper focuses on the stability of the equilibrium point of the autonomous system
introduced in Section 2.5. If the real parts of all the eigenvalues of the autonomous system are negative, the
equilibrium point is stable; otherwise, if at least one eigenvalue has positive real part, the equilibrium point is unstable.
Hopf bifurcations occur when a pair of pure eigenvalues crosses the imaginary axis; see, for example, Ref. [8]. As can be
seen from Fig. 3, along with the increase of the tangential damping coefficient Cp, a Hopf bifurcation phenomenon happens,
the equilibrium point changes from unstable to stable. In this paper, a stable equilibrium point implies that the spin drying
process has a stable periodic solution.

We now consider parameters affecting the Hopf bifurcation. The five parameters listed in Table 1 are considered.
Fig. 4(a) and (b) shows the results of two-parameter bifurcation analyses upon variations of the rotational speed O and the
tangential damping coefficient Cp. In Fig. 4, H represents the curve of the Hopf bifurcation, it is the boundary curve that
separates the stable region from the unstable one. An equilibrium point in the stable region is stable, which implies a
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periodic solution of the spin drying process. Each Cp on the bifurcation curve represents a critical tangential damping
coefficient. For a specific O, in order to keep the spin drying process stable, Cp should be bigger than the critical tangential
damping coefficient. As can be seen from Fig. 4, generally speaking, the critical damping coefficient grows bigger as the
rotational speed O increases. This implies that, in order to keep the spin drying process stable, a higher design value of
rotational speed O usually requires a larger tangential damping coefficient Cp.

Fig. 5(a)and (b) shows the results of two-parameter bifurcation analyses upon variations of parameters mu�Cp and
Ru�Cp, respectively. As can be seen, the critical tangential damping coefficient Cp grows larger when the imbalance mass
mu or the imbalance’s gyration radius Ru increases. This means, in order to keep the equilibrium point stable, a higher
design value of the load for the washing machine needs a larger tangential damping coefficient. Fig. 5(c) displays the
results of two-parameter bifurcation analyses concerning the imbalance mass mu and the imbalance’s gyration radius Ru.
We now analyze the relation between Ru and mu. Let y¼ Ru and x¼ 1=mu, an one-degree polynomial is fitted to the
data of y and x by a polyfit (x, y, 1) command in Matlab. The result shows that the relation between y and x can be descri-
bed as y¼ 0:1387xþ0:0114. Because y¼ Ru and x¼ 1=mu, the relation between Ruand mu can be derived as
Ru ¼ 0:1387=muþ0:0114, which means the imbalance’s gyration radius Ru is in inverse proportion to the imbalance
mass mu.

Fig. 6(a) and (b) shows the results of two-parameter bifurcation analyses upon variations of the axial damping
coefficient Ca and the tangential damping coefficient Cp. As can be seen, along with the increase of the axial damping
coefficient Ca, the critical tangential damping coefficient Cp grows bigger at first in the interval Ca 2 ½0;154�, and then
decreases after Ca ¼ 154 N m s�1. According to Fig. 6, it may be reasonable to use a smaller axial damping coefficient Ca to
keep the equilibrium point stable since a smaller axial damping coefficient Ca corresponds to a smaller critical tangential
damping coefficient Cp in the interval Ca 2 ½0:154�. However, according to our experiments, if the axial damping coefficient
Ca is too small, transient vibrations of the washing machine will be extremely serious. In order to keep the spin drying
mu [kg]

C
p

[N
 m

 s
 ra

d-1
]

Ru [m]

mu [kg]

C
p

[N
 m

 s
 ra

d-1
]

R
u 

[m
]

H H

Stable region

Unstable region
Unstable region

Stable region

Stable region

Unstable region

H

Fig. 5. (a) Two-parameter bifurcation diagrams upon variations of the imbalance mass mu and the tangential damping coefficient Cp; (b) two-parameter

bifurcation diagrams upon variations of the imbalance’s gyration radius Ru and the tangential damping coefficient Cp and (c) two-parameter bifurcation

diagrams upon variations the imbalance mass mu and the imbalance’s gyration radius Ru.
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H.-W. Chen, Q.-J. Zhang / Journal of Sound and Vibration 329 (2010) 2177–21922188
process stable, a bigger axial damping coefficient Ca is recommended and a large-enough tangential damping coefficient Cp

has to be supplied.
Fig. 7(a) shows the results of two-parameter bifurcation analyses upon variations of the stiffness coefficient of the

suspension system Ksand the tangential damping coefficient Cp.The figure shows that the critical tangential damping
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Fig. 8. Numerical simulation for the autonomous system when the tangential damping coefficient Cp ¼ 0:15 N m s rad�1.

H.-W. Chen, Q.-J. Zhang / Journal of Sound and Vibration 329 (2010) 2177–2192 2189
coefficient Cp grows bigger when the stiffness coefficient Ks increases. It can be seen that the interval Ks 2 ½0;500Þ is not
included in Fig. 7(a), since if the stiffness coefficient Ks is too small, the deformation of the spring will be too large and the
position of the tub in the cabinet will be too low to be accepted, as can be seen from Fig. 7(b).

3.2. Time responses

In order to validate the bifurcation results obtained in Section 3.1, time responses are discussed in this section. First,
time responses of the autonomous system described in Eq. (57) are presented with the purpose of validation. Then for a
further view of the spin drying process, simulations of the non-autonomous system described in Eq. (48) are provided.

3.2.1. Time responses of the autonomous system

Time responses of the autonomous system described in Eq. (57) are obtained by numerical integration method,
specifically the Matlab routine ode45. Nominal values of parameters in Table 1 are considered, the height of the imbalance
is assumed to be hu ¼ 0:1 m, initial conditions are selected as e1 ¼ e2 ¼ e4 ¼ e5 ¼ e6 ¼ 0, e3 ¼ 0:408 and _e ¼ 0.

Figs. 8 and 9 explore dynamics of the bifurcation curve shown in Fig. 3. According to Fig. 3, the equilibrium point of the
autonomous system is stable when the tangential damping coefficient Cp40:101 N m s rad�1 and unstable if
Cpo0:101 N m s rad�1. Figs. 8 and 9 show simulations of the autonomous system for Cp ¼ 0:15 and Cp ¼ 0 N m s rad�1,
respectively. Fig. 8 shows that a fixed solution is achieved after t� 20 s which implies the equilibrium point is obtained.
Fig. 9 shows an oscillatory solution which means the equilibrium point could not be achieved at all. As can be seen from
these figures, the equilibrium point of the system is stable when the tangential damping coefficient Cp ¼ 0:15 N m s rad�1
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Fig. 9. Numerical simulation for the autonomous system when the tangential damping coefficient Cp ¼ 0 N m s rad�1.
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but unstable when Cp ¼ 0 N m s rad�1. The results agree with the bifurcation diagrams in Fig. 3. It can be found that at the
initial stage, the vibration amplitudes of the six components are quite large. This is because no acceleration phase is
considered during the simulations and the rotational acceleration of the basket is extremely large at t=0 s. The acceleration
phase will be discussed in the following section.
3.2.2. Time responses of the non-autonomous system

Section 3.2.1 showed simulation results of the autonomous system. It can be seen that, when the tangential damping
coefficient Cp40:101 N m s rad�1, the equilibrium point of the autonomous system is stable; however, once
Cpo0:101 N m s rad�1, the equilibrium point is unstable. It should be noted that a stable equilibrium point of the
autonomous system corresponds to a stable period solution of the non-autonomous one. This section discusses vibrations
of the non-autonomous system at the conditions that Cp40:101 N m s rad�1 and Cpo0:101 N m s rad�1 for a further view of
the dynamic characteristics the spin drying process.

The relation _y ¼O was assumed for the autonomous system in the above sections. Because the rotational speed of the
basket O was assumed to be constant, no acceleration phase was considered in the above sections. This section presents
time responses of the non-autonomous system described in Eq. (48). During our simulations, the following acceleration
phase is considered

_y ¼Oð1�e�t=tÞ (66)
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Fig. 11. Time responses of the non-autonomous system when the tangential damping coefficient Cp ¼ 0 N m s rad�1: (a) Y-direction movement of Ob;

(b) Z-direction movement of Ob; (c) trajectory of Ob projected in plane XY ðt 2 ½45;50�Þ.
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where O is the rotational speed at the final state, and t is a time constant. Two situations corresponding to Cp=0.15 and
0 N m s rad�1 are considered. Simulations are carried out using Matlab routine ode45 with parameter values O¼ 10 Hz,
t¼ 0:45, mu ¼ 1 kg, Ru ¼ 0:15 m, hu ¼ 0:1 m, Ca ¼ 100 N s m�1 and Ks ¼ 1800 N m�1. The initial conditions are selected as
q� ¼ ½0 0:05 0:395 0:095 0 0�T, _q ¼ 0. Here q� is the static equilibrium position of the washing machine.

Fig. 10 gives time responses of the non-autonomous system when the tangential damping coefficient
Cp ¼ 0:15 N m s rad�1. As can been seen from Fig. 10(a), the vibration amplitude of Ob (the original of the dynamic
reference frame XbYbZb) along the direction Y decreases during the transient stage, and then keeps stable after t� 30s.
Trajectory projection in Fig. 10(c) shows that the movement of Ob trends to a circle which implies a periodic solution.

Fig. 11 shows simulations of the non-autonomous system when the tangential damping coefficient Cp ¼ 0 N m s rad�1.
As can be seen from Fig. 11(a), during the starting stage, the vibration amplitude of Ob (the original of the dynamic
reference frame XbYbZb) along the direction Y increases quickly. At the same time, Fig. 11(b) reveals that the position of Ob

gets higher and higher. Fig. 11(c) shows the trajectory of Ob projected in plane XY ðt 2 ½45;50�Þ. As can be seen, the vibration
amplitude of the system is very large. As the figure shows, more than one frequency exists at the steady state.
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For validating or mathematical model, an animation of the instability of spin drying process made by the mechanical
system simulation software ADAMS is provided in Appendix A. As can be seen, the animation provides the same results as
Fig. 11.

4. Conclusions

A mathematical model involving tangential damping forces of the suspension system was built for a vertical axis
automatic washing machine and then converted to an autonomous form for stability analyses. A Hopf bifurcation
phenomenon was observed by a variation of the tangential damping coefficient Cp. Parameters affecting the Hopf
bifurcation including the rotational speed O, mass of the clothes mu, radius of gyration Ru, axial damping coefficient Ca and
spring stiffness Ks were considered. Based on our bifurcation results, the following conclusions can be obtained: As the
rotational speed O, stiffness coefficient Ks, imbalance mass mu or imbalance’s gyration radius Ru increases, a bigger
damping coefficient Cp is required; The imbalance’s gyration radius Ru is in inverse proportion to the imbalance’s mass
mu; When the axial damping coefficient Ca increases, the tangential damping coefficient grows bigger a Cp the
beginning, and then decreases after its maximum.
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Appendix A. Animation of the instability of the spin drying process

The animation named ‘‘Instability of the spin drying process.avi’’ is made by the mechanical system simulation software
ADAMS and describes the instability of the drying process. When the tangential forces are not considered in our
mathematical model, namely the tangential damping coefficient Cp=0, the suspension rod can be simplified as a spring–
damper. In the virtual prototype of the washing machine, four spring–dampers are used to describe the effect of the
suspension system. During the simulation, the following parameters: O¼ 10 Hz,t¼ 0:45, mu ¼ 1 kg,Ru ¼ 0:15 m, hu ¼ 0:1 m,
Ca ¼ 100 N s m�1 and Ks ¼ 1800 N m�1 are considered. It can be seen from the animation that when the tangential damping
coefficient Cp=0, the spin drying process cannot keep stable. This is consistent with our analyses.
Appendix B. Supplementary material

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.jsv.2009.12.012.
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